Features of L-Menthol Crystallization in Optically Active Medium Based on L- and D-Asparaginate Chitosan

Anna B. Shipovskaya orcid (Login required)
Saratov National Research State University named after N.G. Chernyshevsky, Russia

Natalia O. Gegel orcid
Saratov National Research State University named after N.G. Chernyshevsky, Russia

Xenia M. Shipenok orcid
Saratov National Research State University named after N.G. Chernyshevsky, Russia

Paper #3582 received 15 Jan 2023; revised manuscript received 2 Feb 2023; accepted for publication 9 Feb 2023; published online 27 Feb 2023.

DOI: 10.18287/JBPE23.09.010305


The phase separation kinetics of an ethanolic L-menthol solution in an aqueous solution of optically and biologically active chitosan L- and D-aspartate was studied. It has been established that this process proceeds according to the extraction crystallization mechanism and combines two types of phase separation, namely: liquid–liquid and liquid–crystal. The effect of aspartic acid stereoisomer, chitosan molecular weight, and polymer: acid ratio on the optical, structural-morphological, and dimensional characteristics of dispersed phase droplets at the initial stage of phase separation and crystal aggregates of the L-menthol condensed phase at the final stage was assessed. In the chitosan D-aspartate medium, as well as with an increase in the concentration of components in the optically active medium and the molecular weight of the polymer, the rate of phase separation, the size of droplets and particles increase. It has been suggested that the system under study is promising for encapsulating hydrophobic drugs, creating chirooptic waveguides, and sensors for biomedical purposes, as well as developing new methods for studying the fundamental principles of phase separation in intracellular regulation of membraneless organelles and subcellular organization of biosystems, including under stress conditions of a living organism underlying the development of new pharmaceuticals to treat rare and currently incurable diseases.


chitosan; L- and D-aspartic acid; salt formation; L-menthol; phase separation; extraction crystallization; spherulites; intracellular regulation; subcellular organization

Full Text:



1. M. Mabrouk, S. F. Hammad, A. A. Abdella, and F. R. Mansour, “Enantioselective chitosan-based racemic ketoprofen imprinted polymer: chiral recognition and resolution studym,” International Journal of Biological Macromolecules 200, 327–334 (2022).

2. C. Liu, C. Dong, S. Liu, Y. Yang, and Z. Zhang, “Multiple chiroptical switches and logic circuit based on salicyl-imine-chitosan hydrogel,” Carbohydrate Polymers 257, 117534 (2021).

3. X. Dou, N. Mehwish, C. Zhao, J. Liu, C. Xing, and C. Feng, “Supramolecular hydrogels with tunable chirality for promising biomedical applications,” Accounts of Chemical Research 53(4), 852–862 (2020).

4. L. Xu, Y. A. Huang, Q. J. Zhu, and C. Ye, “Chitosan in molecularly-imprinted polymers: Current and future prospects,” International Journal of Molecular Sciences 16(8), 18328–18347 (2015).

5. A. B. Shipovskaya, O. N. Malinkina, N. O. Gegel, I. V. Zudina, and T. N. Lugovitskaya, “Structure and properties of chitosan salt complexes with ascorbic acid diastereomers,” Russian Chemical Bulletin 70(9), 1765–1774 (2021).

6. N. O. Gegel, Yu. Yu. Zhuravleva, A. B. Shipovskaya, O. N. Malinkina, and I. V. Zudina, “Influence of chitosan ascorbate chirality on the gelation kinetics and properties of silicon-chitosan-containing glycerohydrogels,” Polymers 10(3), 259–275 (2018).

7. A. B. Shipovskaya, N. O. Gegel, X. M. Shipenok, O. S. Ushakova, T. N. Lugovitskaya, and I. V. Zudina, “Structure, properties and biological activity of chitosan salts with L- and D-aspartic acid,” Biology and Life Sciences Forum 20(1), 5 (2022).

8. V. A. Tverdislov, L. V. Yakovenko, and A. A. Zhavoronkov, “Chirality as a problem of biochemical physics,” Russian Chemical Journal LI(1), 13–22 (2007) [in Russian].

9. A. D’Aniello, “D-aspartic acid: an endogenous amino acid with an important neuroendocrine role,” Brain Research Reviews 53(2), 215234 (2007).

10. S. C. Zapico, D. H. Ubelaker, and J. Adserias-Garriga, “Applications of physiological bases of aging to forensic science,” Chapter 13 in Forensic Science and Humanitarian Action: Interacting with the Dead and the Living, R. C. Parra, S. C. Zapico, and D. H. Ubelaker (Eds.), John Wiley & Sons Ltd., New York, 183-197 (2020).

11. J. Patočka, Z. Navrátilová, “D-serin: Od kuriózní molekuly k potenciálnímu psychofarmaku [D-serine: from curiosity molecule to potential psychopharmaceutical],” Psychiatry 23(3), 142–147 (2019).

12. A. González-Sarrías, M. Á. Núñez-Sánchez, R. García-Villalba, F. A. Tomás-Barberán, and J. C. Espín, “Antiproliferative activity of the ellagic acid-derived gut microbiota isourolithin A and comparison with its urolithin A isomer: the role of cell metabolism,” European Journal of Nutrition 56(2), 831–841 (2017).

13. E. Adaligil, K. Patil, M. Rodenstein, and K. Kumar, “Discovery of peptide antibiotics composed of D-amino acids,” ACS Chemical Biology 14(7), 1498–1506 (2019).

14. R. Kumar, N. Singh, A. Chauhan, M. Kumar, R. S. Bhatta, and S. K. Singh, “Mycobacterium tuberculosis survival and biofilm formation studies: effect of D-amino acids, D-cycloserine and its components,” Journal of Antibiotics 75, 472–479 (2022).

15. T. Kovács, R. Szűcs, G. Holló, Z. Zuba, J. Molnár, H. K. Christenson, and I. Lagzi, “Self-assembly of chiral menthol molecules from a liquid film into ring-banded spherulites,” Crystal Growth & Design 19(7), 4063–4069 (2019).

16. A. G. Shtukenberg, Y. O. Punin, A. Gujral, and B. Kahr, “Growth actuated bending and twisting of single crystals,” Angewandte Chemie International Edition 53(3), 672−699 (2014).

17. H.-F. Wang, C.-H. Chiang, W.-C. Hsu, T. Wen, W.-T. Chuang, B. Lotz, M.-C. Li, and R.-M. Ho, “Handedness of twisted lamella in banded spherulite of chiral polylactides and their blends,” Macromolecules 50, 5466−5475 (2017).

18. T. Kyu, H. W. Chiu, A. J. Guenthner, Y. Okabe, H. Saito, and T. Inoue, “Rhythmic growth of target and spiral spherulites of crystalline polymer blends,” Physical Review Letters 83(14), 2749−2752 (1999).

19. J. Xu, H. S. Ye, Zhang, and B. Guo, “Organization of twisting lamellar crystals in birefringent banded polymer spherulites: a mini-review,” Crystals 7(8), 241–251 (2017).

20. M. Sun, S. Du, W. Tang, L. Jia, and J. Gong, “Design of spherical crystallization for drugs based on thermal-induced liquid-liquid phase separation: case studies of water-insoluble drugs,” Industrial & Engineering Chemistry Research 58(44), 20401–20411 (2019).

21. I. De Albuquerque, M. Mazzotti, “Influence of liquid-liquid phase separation on the crystallization of L -Menthol from water,” Chemical Engineering & Technology 40(7), 1339–1346 (2017).

22. E. Betz-Güttner, M. Righi, S. Micera, and A. Fraleoni-Morgera, “Directional growth of cm-long PLGA nanofibers by a simple and fast wet-processing method,” Materials 15(2), 687 (2022).

23. S. Kim, S. C. Peterson, “Optimal conditions for the encapsulation of menthol into zein nanoparticles,” LWT 144, 111213 (2021).

24. A. Ferri, N. Kumari, R. Peila, and A. A. Barresi, “Production of menthol-loaded nanoparticles by solvent displacement,” Canadian Journal of Chemical Engineering 95(9), 1690–1706 (2017).

25. R. Nuisin, J. Krongsin, S. Noppakundilograt, and S. Kiatkamjornwong, “Microencapsulation of menthol by crosslinked chitosan via porous glass membrane emulsification technique and their controlled release properties,” Journal of Microencapsulation 30(5), 498–509 (2013).

26. A. M. Api, D. Belsito, D. Botelho, D. Browne, M. Bruze, G.A. Burton Jr., J. Buschmann, M.L. Dagli, M. Date, W. Dekant, C. Deodhar, M. Francis, A.D. Fryer, K. Joshi, S. La Cava, A. Lapczynski, D.C. Liebler, D. O’Brien, R. Parakhia, A. Patel, T. M. Penning, G. Ritacco, J. Romine, D. Salvito, T. W. Schultz, I. G. Sipes, Y. Thakkar, E. H. Theophilus, A. K. Tiethof, Y. Tokura, S. Tsang, and J. Wahler, “RIFM fragrance ingredient safety assessment, menthyl isovalerate CAS registry number 16409-46-4,” Food and Chemical Toxicology 110, S486–S495 (2017).

27. H. K. Vaddi, P. C. Ho, Y. W. Chan, and S. Y. Chan, “Terpenes in ethanol: haloperidol permeation and partition through human skin and stratum corneum changes,” Journal of Controlled Release 81(1–2), 121–133 (2002).

28. G. P. P. Kamatou, I. Vermaak, A. M. Viljoen, and B. M. Lawrence, “Menthol: a simple monoterpene with remarkable biological properties,” Phytochemistry 96, 15–25 (2013).

29. M. Oz, E. G. El Nebrisi, K. H. S. Yang, F. C. Howarth, and L. T. Al Kury, “Cellular and molecular targets of menthol actions,” Frontiers in Pharmacology 8, 472 (2017).

30. S. V. Nesterov, N. S. Ilyinsky, and V. N. Uversky, “Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses,” Biochimica et Biophysica Acta – Molecular Cell Research 1868(11), 119102 (2021).

31. D. M. Mitrea, R. W. Kriwacki, “Phase separation in biology; functional organization of a higher order,” Cell Communication and Signaling 14, 1 (2016).

32. T. N. Lugovitskaya, A. B. Shipovskaya, S. L. Shmakov, and X. M. Shipenok, “Formation, structure, properties of chitosan aspartate and metastable state of its solutions for obtaining nanoparticles,” Carbohydrate Polymers 277, 118773 (2022).

© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+