Estimating of Fraction of Weakly Deformable Erythrocytes in a Blood Sample Based on the Method of Laser Ektacytometry and a Database of Simulated Diffraction Patterns

Vladislav D. Ustinov orcid
M. V. Lomonosov Moscow State University, Russia

Evgeniy G. Tsybrov orcid (Login required)
M. V. Lomonosov Moscow State University, Russia

Sergey Y. Nikitin orcid
M. V. Lomonosov Moscow State University, Russia


Paper #7216 received 21 Feb 2023; revised manuscript received 15 Jun 2023; accepted for publication 16 Jun 2023; published online 22 Jul 2023.

Abstract

The problem of measuring the fraction of weakly deformable erythrocytes in a blood sample by the laser diffractometry in a shear flow (ektacytometry) is considered. The algorithm for measuring this parameter is proposed, based on a comparison of experimentally observed diffraction patterns with ones calculated in the bimodal ensemble approximation, when only two types of erythrocytes are present in a blood sample – normal (deformable) and rigid (non-deformable) erythrocytes. The accuracy of the algorithm was estimated by the method of numerical experiment and the area of its applicability was determined.

Keywords

erythrocyte deformability; laser ektacytometry; data processing algorithms

Full Text:

PDF

References


1. E. Ch. Mokken, M. Kedaria, Ch. P. Henny, M. R. Hardeman, and A. W. Gelb, “The clinical importance of erythrocyte deformability, a hemorrheological parameter,” Annals of Hematology 64, 113–122 (1992).

2. S. Shin, Y. Ku, M. S. Park, and J. S. Suh, “Deformability of red blood cells: A determinant of blood viscosity,” Journal of Mechanical Science and Technology 19, 216–223 (2005).

3. O. K. Baskurt, M. Boynard, G. C. Cokelet, P. Connes, B. M. Cooke, S. Forconi, F. Liao, M. R. Hardeman, F. Jung, H. J. Meiselman, G. Nash, N. Nemeth, B. Neu, B. Sandhagen, S. Shin, G. Thurston, and J. L. Wautier, “New guidelines for hemorheological laboratory techniques,” Clinical Hemorheology and Microcirculation 42(2), 75–97 (2009).

4. T. J. McMahon, “Red BloodCell Deformability, Vasoactive Mediators, and Adhesion,” Frontiers in Physiology 10, 1417 (2019).

5. M. Bessis, N. Mohandas, “A diffractometric method for the measurement of cellular deformability,” Blood Cells 1, 307–313 (1975).

6. N. Nemeth, F. Kiss, and K. Miszti–Blasius, “Interpretation of osmotic gradient ektacytometry (osmoscan) data: A comparative study for methodological standards,” Scandinavian Journal of Clinical and Laboratory Investigation 75(3), 213–222 (2015).

7. A. Sadaf, K. G. Seu, E. Thaman, R. Fessler, D. G. Konstantinidis, H. A. Bonar, J. Korpik, R. E. Ware, P. T. McGann, C. T. Quinn, and T. A. Kalfa, “Automated Oxygen Gradient Ektacytometry: A Novel Biomarker in Sickle Cell Anemia,” Frontiers in Physiology 12, 636609 (2021).

8. A. U. Zaidi, S. Buck, M. Gadgeel, M. Herrera–Martinez, A. Mohan, K. Johnson, S. Bagla, R. M. Johnson, and Y. Ravindranath, “Clinical Diagnosis of Red Cell Membrane Disorders: Comparison of Osmotic Gradient Ektacytometry and Eosin Maleimide (EMA) Fluorescence Test for Red Cell Band 3 (AE1, SLC4A1) Content for Clinical Diagnosis,” Frontiers in Physiology 11, 636 (2020).

9. M. A. E. Rab, B. A. van Oirschot, J. Bos, T. H. Merkx, A. C. W. van Wesel, O. Abdulmalik, M. K. Safo, B. A. Versluijs, M. E. Houwing, M. H. Cnossen, J. Riedl, R. E. G. Schutgens, G. Pasterkamp, M. Bartels, E. J. van Beers, and R. van Wijk, “Rapid and reproducible characterization of sickling during automated deoxygenation in sickle cell disease patients,” American Journal of Hematology 94(5), 575–584 (2019).

10. O. K. Baskurt, M. R. Hardeman, M. Uyuklu, P. Ulker, M. Cengiz, N. Nemeth, S. Shin, T. Alexy, and H. J. Meiselman, “Comparison of three commercially available ektacytometers with different shearing geometries,” Biorheology 46(3), 251–264 (2009).

11. J. G. G. Dobbe, M. R. Hardeman, G. J. Streekstra, J. Starckee, C. Ince, and C. A. Grimbergen, “Analyzing red blood cell–deformability distributions,” Blood Cells, Molecules, and Diseases 28(3), 373–384 (2002).

12. J. G. G. Dobbe, G. J. Streekstra, M. R. Hardeman, C. Ince, and C. A. Grimbergen, “Measurement of the Distribution of Red Blood Cell Deformability Using an Automated Rheoscope,” Cytometry: The Journal of the International Society for Analytical Cytology 50(6), 313–325 (2002).

13. S. Yu. Nikitin, A. E. Lugovtsov, V. D. Ustinov, M. D. Lin, and A. V. Priezzhev, “Study of laser beam scattering by inhomogeneous ensemble of red blood cells in a shear flow,” Journal of Innovative Optical Health Science 8(4), 1550031 (2015).

14. N. L. Parrow, P.-C. Violet, H. Tu, J. Nichols, C. A. Pittman, C. Fitzhugh, R. E. Fleming, N. Mohandas, J. F. Tisdale, and M. Levine, “Measuring Deformability and Red Cell Heterogeneity in Blood by Ektacytometry,” Journal of Visualized Experiments (131), e56910 (2018).

15. J. Plasek, T. Marik, “Determination of undeformable erythrocytes in blood samples using laser light scattering,” Applied Optics 21(23), 4335–4338 (1982).

16. G. J. Streekstra, J. G. G. Dobbe, and A. G. Hoekstra, “Quantification of the poorly deformable red blood cells using ektacytometry,” Optics Express 18(13), 14173–14182 (2010).

17. Y. Man, R. An, K. Monchamp, Z. Sekyonda, E. Kucukal, C. Federici, W. J. Wulftange, U. Goreke, A. Bode, V. A. Sheehan, and U. A. Gurkan, “Occlusion Chip: A functional microcapillary occlusion assay complementary to ektacytometry for detection of small–fraction red blood cells with abnormal deformability,” Frontiers in Physiology 13, 954106 (2022).

18. Y. J. Kang, S. Serhrouchni, A. Makhro, A. Bogdanova, and S. S. Lee, “Simple Assessment of Red Blood Cell Deformability Using Blood Pressure in Capillary Channels for Effective Detection of Subpopulations in Red Blood Cells,” American Chemical Society Omega 7(43), 38576–38588 (2022).

19. M. Grau, L. Kuck, T. Dietz, W. Bloch, and M. J. Simmonds, “Sub–Fractions of Red Blood Cells Respond Differently to Shear Exposure Following Superoxide Treatment,” Biology 10(1), 47 (2021).

20. S. Yu. Nikitin, A. V. Priezzhev, and A. E. Lugovtsov, “Laser Diffraction by the Erythrocytes and Deformability Measurements,” Chapter 6 in Advanced Optical Flow Cytometry: Methods and Disease Diagnoses, V. V. Tuchin (Ed.), 1st ed., John Wiley & Sons, 133–154 (2011). ISBN:9783527634286.

21. S. Yu. Nikitin, A.V. Priezzhev, and A. E. Lugovtsov, “Analysis of laser beam scattering by an ensemble of particles modeling red blood cells in ektacytometer,” Journal of Quantitative Spectroscopy and Radiative Transfer 121, 1–8 (2013).

22. S. Yu. Nikitin, V. D. Ustinov, S. D. Shishkin, and M. S. Lebedeva, “Line curvature algorithm in laser ektacytometry of red blood cells,” Quantum Electronics 50(9), 888–894 (2020).

23. S. Yu. Nikitin, V. D. Ustinov, “Characteristic point algorithm in laser ektacytometry of red blood cells,” Quantum Electronics 48(1), 70–74 (2018).

24. S. Yu. Nikitin, V. D. Ustinov, and S. D. Shishkin, “Band point algorithms for measuring diffraction pattern parameters in laser ektacytometry of red blood cells,” Quantum Electronics 51(4), 353–358 (2021).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+