Optical Properties of Fluorescent Tags Based on Gold Nanoparticles at Physiological Salt Content: In Vitro and In Vivo Study

Andrei Demenshin
Saint-Petersburg State University, Russian Federation

Maria Istomina
Almazov National Medical Research Centre, Russian Federation
Saint-Petersburg Electrotechnical University, Russian Federation

Elena Solovyeva orcid (Login required)
Saint-Petersburg State University, Russian Federation


Paper #9161 received 31 Aug 2024; revised manuscript received 22 Oct 2024; accepted for publication 6 Nov 2024; published online 3 Dec 2024.

DOI: 10.18287/JBPE24.10.040312

Abstract

The study describes the optical properties of fluorescent tags based on gold nanoparticles coated with a polymer shell with incorporated cyanine 5.5 in water and medium with a physiological salt background. The radiant efficiency was assessed by fluorescence tomography for the tag suspensions placed in a black plate and after their local subcutaneous injection into ICR mice. Partial aggregation of tags is noted, which occurs at changing water on isotonic solution, which leads to the increase of dye fluorescent intensity. In vivo imaging was performed in a bimodal fluorescence and computed tomography regime with varying the dose of the tags. The fluorescence enhancement 30 min after the tags injection was revealed. Computed tomography images allow reliable identification of the area of gold tags localization when their content in the injected suspension is at least 23.7 mg/mL.

Keywords

bioimaging; fluorescence tomography; computed tomography; gold nanoparticles; aggregation; cyanines

Full Text:

PDF

References


1. Mumtaz, N. Hussain, S. Salam, and M. Bilal, “Multifunctional nanodiamonds as emerging platforms for cancer treatment, and targeted delivery of genetic factors and protein medications—a review,” Journal of Materials Science 57(17), 8064−8099 (2022).

2. J. Dulińska-Litewka, A. Łazarczyk, P. Hałubiec, O. Szafrański, K. Karnas, and A. Karewicz, “Superparamagnetic iron oxide nanoparticles-current and prospective medical applications,” Materials 12(4), 617 (2019).

3. R. Mahbuba, “Magnetic Resonance Imaging and Iron-oxide Nanoparticles in the era of Personalized Medicine,” Nanotheranostics 7(4), 424−449 (2023).

4. A. F. Alykova, V. G. Yakunin, V. Yu. Timoshenko, and I. N. Zavestovskaya, “Optical methods of silicon nanoparticle diagnostics for applications in biomedicine,” Journal of Biomedical Photonics & Engineering 5(2), 020304 (2019).

5. M. C. Goncalves, “Sol-gel silica nanoparticles in medicine: A natural choice. Design, Synthesis and Products,” Molecules 23(8), 2021 (2018).

6. D. V. Korolev, G. A. Shulmeyster, N. V. Evreinova, M. S. Syrovatkina, M. S. Istomina, V. N. Postnov, I. V. Aleksandrov, A. S. Krasichkov, and M. M. Galagudza, “Theranostic Platforms Based on Silica and Magnetic Nanoparticles Containing Quinacrine, Chitosan, Fluorophores, and Quantum Dots,” International Journal of Molecular Sciences 23(2), 932 (2022).

7. I. Yu. Yanina, N. A. Navolokin, I. V. Vidyasheva, I. Y. Goryacheva, V. I. Kochubey, and V. V. Tuchin, “Functionalized upconversion luminescent nanoparticles for theranostics,” in Diffuse Optical Spectroscopy and Imaging VII, H. Dehghani and H. Wabnitz (Eds.), 11074, 11074_43 (2019).

8. Y. Toropova, D. Korolev, M. Istomina, G. Shulmeyster, A. Petukhov, V. Mishanin, A. Gorshkov, E. Podyacheva, K. Gareev, A. Bagrov, and O. Demidov, “Controlling the Movement of Magnetic Iron Oxide Nanoparticles Intended for Targeted Delivery of Cytostatics,” International Journal of Nanomedicine 16, 5651−5664 (2021).

9. N. Mhlanga, N. Mphuthi, H. Van der Walt, S. Nyembe, T. Mokhena, and L. Sikhwivhilu, “Nanostructures and nanoparticles as medical diagnostic imaging contrast agents: A review,” Materials Today Chemistry 40, 102233 (2024).

10. M. Bravo, B. Fortuni, P. Mulvaney, J. Hofkens, H. Uji-I, S. Rocha, and J. A. Hutchison, “Nanoparticle-mediated thermal Cancer therapies: Strategies to improve clinical translatability,” Journal of Controlled Release 372, 751−777 (2024).

11. A. B. Bucharskaya, N. G. Khlebtsov, B. N. Khlebtsov, G. N. Maslyakova, N. A. Navolokin, V. D. Genin, E. A. Genina, V. V. Tuchin, “Photothermal and Photodynamic Therapy of Tumors with Plasmonic Nanoparticles: Challenges and Prospects,” Materials 15(4), 1606 (2022).

12. L. Tang, R. Zhang, Y. Wang, M. Liu, D. Hu, Y. Wang, and L. Yang, “Nanoparticle delivery for central nervous system diseases and its clinical application,” Nano Research 17(7), 6305−6322 (2024).

13. Y. Liu, W. Cheng, H. Xin, R. Liu, Q. Wang, W. Cai, X. Peng, F. Yang, and H. Xin, “Nanoparticles advanced from preclinical studies to clinical trials for lung cancer therapy,” Cancer Nanotechnology 14(1), 28 (2023).

14. L. Yao, D. Bojic, and M. Liu, “Applications and safety of gold nanoparticles as therapeutic devices in clinical trials,” Journal of Pharmaceutical Analysis 13(9), 960−967 (2023).

15. N. Chanda, A. Upendran, E. J. Boote, A. Zambre, S. Axiak, K. Selting, K. V. Katti, W. M. Leevy, Z. Afrasiabi, J. Vimal, J. Singh, J. C. Lattimer, and R. Kannan, “Gold nanoparticle based X-ray contrast agent for tumor imaging in mice and dog: A potential nano-platform for computer tomography theranostics,” Journal of Biomedical Nanotechnology 10(3), 383−392 (2014).

16. A. Bucharskaya, G. Maslyakova, G. Terentyuk, A. Yakunin, Y. Avetisyan, O. Bibikova, E. Tuchina, B. Khlebtsov, N. Khlebtsov, and V. Tuchin, “Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles,” International Journal of Molecular Sciences 17(8), 1295 (2016).

17. W. Zhang, X. Ding, H. Cheng, C. Yin, J. Yan, Z. Mou, W. Wang, D. Cui, C. Fan, and D. Sun, “Dual-Targeted Gold Nanoprism for Recognition of Early Apoptosis, Dual Model Imaging and Precise Cancer Photothermal Therapy,” Theranostics 9(19), 5610−5625 (2019).

18. D. K. Tuchina, I. G. Meerovich, O. A. Sindeeva, V. V. Zherdeva, N. I. Kazachkina, I. D. Solov’ev, A. P. Savitsky, A. A. Bogdanov, and V. V. Tuchin, “Prospects for multimodal visualisation of biological tissues using fluorescence imaging,” Quantum Electronics 51(2), 104−117 (2021).

19. O. Mostafa, H. M. Saleh, T. A. Salaheldin, A. K. Ibrahim, and S. A. Elfeky, “Fluorescein/gold nanoparticles conjugated EGFR antibody for imaging and P53 upregulation in hamster mucosal cells carcinoma,” Journal of Drug Delivery Science and Technology 76, 103293 (2022).

20. S. K. Pirutin, M. V. Efremova, A. I. Yusipovich, V. B. Turovetskii, G. V. Maksimov, A. B. Druzhko, and A. G. Mazhuga, “Visualization and Cytotoxicity of Fluorescence-Labeled Dimeric Magnetite-Gold Nanoparticles Conjugated with Prostate-Specific Membrane Antigen in Mouse Macrophages,” Bulletin of Experimental Biology and Medicine 166(3), 386−389 (2019).

21. V. O. Svinko, A. I. Shevchuk, A. N. Smirnov, D. V. Makeeva, and E. V. Solovyeva, “Gold nanostars-based labels for surface-enhanced Raman scattering imaging with red medical lasers,” Opt. Spectrosc. 130(10), 1590−1595 (2022).

22. A. I. Shevchuk, V. O. Svinko, A. N. Smirnov, and E. V. Solovyeva, “SERS study of cyanine dyes: optimization of metal core and molecular label choice for plasmonic nanotags,” Dyes and Pigments 216, 111329 (2023).

23. B. Andreiuk, F. Nicolson, L. M. Clark, S. R. Panikkanvalappil, Kenry, M. Rashidian, S. Harmsen, and M. F. Kircher, “Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications,” Nanotheranostics 6(1), 10−30 (2022).

24. A. N. Smirnov, S. F. Aslanov, D. V. Danilov, O. Y. Kurapova, and E. V. Solovyeva, “One-Pot Synthesis of Silica-Coated Gold Nanostructures Loaded with Cyanine 5.5 for Cell Imaging by SERS Spectroscopy,” Nanomaterials 13(7), 1267 (2023).

25. A. N. Smirnov, A. I. Shevchuk, A. V. Volkova, V. D. Kalganov, and E. V. Solovyeva, “Gold-silica plasmonic nanobones with tunable size and optical bimodality for bioimaging,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 684, 133115 (2024).

26. A. Rahman, K. Praveen, P. Panangattukara, P. Yadav, T. Goswami, A. Shanavas, H. N. Ghosh, and P. P. Neelakandan, “Gold-BODIPY Nanoparticles with Luminescence and Photosensitization Properties for Photodynamic Therapy and Cell Imaging,” ACS Applied Nano Materials 5(5), 6532−6542 (2022).

27. H. Y. Lee, H. Son, J. M. Lim, J. Oh, D. Kang, W. S. Han, and J. H. Jung, “BODIPY-functionalized gold nanoparticles as a selective fluoro-chromogenic chemosensor for imaging Cu2+ in living cells,” Analyst 135(8), 2022−2027 (2010).

28. S. Alizadeh, Z. Nazari, “A Review on Gold Nanoparticles Aggregation and Its Applications,” Journal of Chemical Reviews 2(4), 228−242 (2020).

29. M. Chan, W. Leng, and P. Vikesland, “Surface-Enhanced Raman Spectroscopy Characterization of Salt-Induced Aggregation of Gold Nanoparticles,” ChemPhysChem 19(1), 24−28 (2018).

30. L. Catanzaro, V. Scardaci, M. Scuderi, M. Condorelli, L. D’Urso, and G. Compagnini, “Surface plasmon resonance of gold nanoparticle aggregates induced by halide ions,” Materials Chemistry and Physics 308, 128245 (2023).

31. D. S. Farrakhova, I. D. Romanishkin, D. V. Yakovlev, Yu. S. Maklygina, V. A. Oleinikov, P. V. Fedotov, M. V. Kravchik, L. Bezdetnaya, and V. B. Loschenov, “Correlation of spectroscopic and structural properties of indocyanine green J-aggregates,” Biomedical Photonics 11(3), 4−16 (2022).

32. I. V. Klimenko, T. Yu. Astakhova, E. N. Timokhina, and A. V. Lobanov, “Molecular Aggregation of Aluminum Phthalocyanine Chloride in Organic and Water-Organic Media,” Journal of Biomedical Photonics & Engineering 9(3), 030301 (2023).

33. J. Kang, O. Kaczmarek, J. Liebscher, and L. Dahne, “Prevention of H-Aggregates Formation in Cy5 Labeled Macromolecules,” International Journal of Polymer Science 2010(1), 264781 (2010).

34. H. He, T. Li, L. Yao, M. Liu, H. Xia, and L. Shen, “Aggregation-induced emission enhancement (AIEE)-active donor-acceptor type fluorophores based on the 1,3-diaryl pyrazole unit: Conspicuous mechanochromic fluorescence and biosensing of iodide ions,” Dyes and Pigments 203, 110309 (2022).

35. T. Haug, P. Klemm, S. Bange, and J. M. Lupton, “Hot-Electron Intraband Luminescence from Single Hot Spots in Noble-Metal Nanoparticle Films,” Physical Review Letters 115(6), 067403 (2015).

36. A. Yoshida, N. Uchida, and N. Kometani, “Synthesis and spectroscopic studies of composite gold nanorods with a double-shell structure composed of spacer and cyanine dye J-aggregate layers,” Langmuir 25(19), 11802–11807 (2009).

37. N. Pargaonkar, Y. M. Lvov, N. Li, J. H. Steenekamp, and M. M. De Villiers, “Controlled release of dexamethasone from microcapsules produced by polyelectrolyte layer-by-layer nanoassembly,” Pharmaceutical Research 22(5), 826−835 (2005).

38. V. O. Svinko, A. N. Smirnov, A. I. Shevchuk, A. I. Demenshin, A. A. Smirnov, and E. V. Solovyeva, “Comparative study of fluorescence core-shell nanotags with different morphology of gold core,” Colloids and Surfaces B: Biointerfaces 226, 113306 (2023).

39. G. Sonavane, K. Tomoda, and K. Makino, “Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size,” Colloids and Surfaces B: Biointerfaces 66(2), 274−280 (2008).

40. S. Kozomara, N. L. Ford, “Detectability of fluorescent gold nanoparticles under micro-CT and optical projection tomography imaging,” Journal of Medical Imaging 7(2), 026002 (2020).






© 2014-2025 Authors
Public Media Certificate (RUS
). 12+