Endofluorescence Imaging of Murine Hepatocellular Carcinoma Cell Culture by Fluorescence Lifetime Microscopy with Modulated CMOS Camera

Elena Potapova (Login required)
Research and Development Center of Biomedical Photonics, Orel State University, Russia

Evgeny Zherebtsov
Research and Development Center of Biomedical Photonics, Orel State University, Russia

Ksenia Kandurova
Research and Development Center of Biomedical Photonics, Orel State University, Russia

Alexander Palalov
Research and Development Center of Biomedical Photonics, Orel State University, Russia

Viktor Dremin
Research and Development Center of Biomedical Photonics, Orel State University, Russia
College of Engineering and Physical Sciences, Aston University, Aston Triangle, Birmingham, UK

Andrey Dunaev
Research and Development Center of Biomedical Photonics, Orel State University, Russia


Paper #3464 received 17 Nov 2021; revised manuscript received 24 Feb 2022; accepted for publication 25 Feb 2022; published online 22 Mar 2022.

DOI: 10.18287/JBPE22.08.010303

Abstract

In this work, we propose the results of pilot studies on using the modulated CMOS camera for the imaging of autofluorescence in murine hepatocellular carcinoma cells with excitation in UV light. Here, we assess the capabilities of the imaging system to detect changes in the NAD(P)H fractions produced and utilised in the glycolysis, pentose phosphate pathway and oxidative phosphorylation. Our results suggest that the camera and the system based on one possess a sufficient margin of SNR and sensitivity to detect the cellular metabolic changes associated with the metabolic pathways mentioned.

Keywords

hepatocellular carcinoma; metabolism; frequency domain fluorescence lifetime imaging

Full Text:

PDF

References


1. J. M. Llovet, R. K. Kelley, A. Villanueva, A. G. Singal, E. Pikarsky, S. Roayaie, R. Lencioni, K. Koike, J. Zucman-Rossi, and R. S. Finn, “Hepatocellular carcinoma,” Nature Reviews Disease Primers 7(1), 6 (2021).

2. D. Mezale, I. Strumfa, A. Vanags, A. Kalva, D. Balodis, B. Strumfs, I. Fridrihsone, A. Abolins, and J. Gardovskis, “Diagnostic Algorithm of Hepatocellular Carcinoma: Classics and Innovations in Radiology and Pathology,” Chapter 2 in Hepatocellular Carcinoma-Advances in Diagnosis and Treatment, C. T. Streba, C. C. Vere, and I. Rogoveanu, IntechOpen, UK, 2018.

3. M. M. Lukina, L. E. Shimolina, N. M. Kiselev, V. E. Zagainov, D. V Komarov, E. V Zagaynova, and M. V Shirmanova, “Interrogation of tumor metabolism in tissue samples ex vivo using fluorescence lifetime imaging of NAD (P) H,” Methods and Applications in Fluorescence 8(1), 14002 (2019).

4. K. Kandurova, V. Dremin, E. Zherebtsov, E. Potapova, A. Alyanov, A. Mamoshin, Y. Ivanov, A. Borsukov, and A. Dunaev, “Fiber-Optic System for Intraoperative Study of Abdominal Organs during Minimally Invasive Surgical Interventions,” Applied Sciences 9(2), 217 (2019).

5. V. Dremin, E. Potapova, E. Zherebtsov, K. Kandurova, V. Shupletsov, A. Alekseyev, A. Mamoshin, and A. Dunaev, “Optical percutaneous needle biopsy of the liver: A pilot animal and clinical study,” Scientific Reports 10(1), 14200 (2020).

6. E. Zherebtsov, M. Zajnulina, K. Kandurova, E. Potapova, V. Dremin, A. Mamoshin, S. Sokolovski, A. Dunaev, and E. U. Rafailov, “Machine Learning Aided Photonic Diagnostic System for Minimally Invasive Optically Guided Surgery in the Hepatoduodenal Area,” Diagnostics 10(11), 873 (2020).

7. E. A. Zherebtsov, E. V. Potapova, A. V. Mamoshin, V. V. Shupletsov, K. Y. Kandurova, V. V. Dremin, A. Y. Abramov, and A. V. Dunaev, “Fluorescence lifetime needle optical biopsy discriminates hepatocellular carcinoma,” Biomedical Optics Express 13(2), 633–646 (2022).

8. L. Kou, X. Jiang, H. Huang, X. Lin, Y. Zhang, Q. Yao, and R. Chen, “The role of transporters in cancer redox homeostasis and cross-talk with nanomedicines,” Asian Journal of Pharmaceutical Sciences 15(2), 145–157 (2020).

9. T. S. Blacker, M. R. Duchen, “Investigating mitochondrial redox state using NADH and NADPH autofluorescence,” Free Radical Biology and Medicine 100, 53–65 (2016).

10. K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochemical & Photobiological Sciences 4(1), 13–22 (2005).

11. M. T. Erkkilä, B. Bauer, N. Hecker-Denschlag, M. J. M. Medina, R. A. Leitgeb, A. Unterhuber, J. Gesperger, T. Roetzer, C. Hauger, W. Drexler, G. Widhalm, and M. Andreana, “Widefield fluorescence lifetime imaging of protoporphyrin IX for fluorescence-guided neurosurgery: An ex vivo feasibility study,” Journal of Biophotonics 12(6), e201800378 (2019).

12. N. L. Lazarevich, O. A. Cheremnova, E. V. Varga, D. A. Ovchinnikov, E. I. Kudrjavtseva, O. V. Morozova, D. I. Fleishman, N. V. Engelhardt, and S. A. Duncan, “Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors,” Hepatology 39(4), 1038–1047 (2004).

13. E. Köhler, H.-J. Barrach, and D. Neubert, “Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP,” FEBS Letters 6(3), 225-228 (1970).

14. I. J. Bickis, J. H. Quastel, “Effects of metabolic inhibitors on energy metabolism of Ehrlich ascites carcinoma cells,” Nature 205(4966), 44–46 (1965).

15. H. Terada, “Uncouplers of oxidative phosphorylation,” Environmental Health Perspectives 87, 213–218 (1990).

16. G. Palmer, D. J. Horgan, H. Tisdale, T. P. Singer, and H. Beinert, “Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase: XIV. Location of the sites of inhibition of rotenone, barbiturates, and piericidin by means of electron paramagnetic resonance spectroscopy,” Journal of Biological Chemistry 243(4), 844–847 (1968).

17. F. Bartolomé, A. Y. Abramov, “Measurement of Mitochondrial NADH and FAD Autofluorescence in Live Cells,” in Mitochondrial Medicine, Human Press, New York, 263–270 (2015).

18. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophysical Journal 94(2), L14–L16 (2008).

19. C. Stringari, A. Cinquin, O. Cinquin, M. A. Digman, P. J. Donovan, and E. Gratton, “Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue,” Proceedings of the National Academy of Sciences 108(33), 13582–13587 (2011).

20. M. Y. Berezin, S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chemical Reviews 110(5), 2641–2684 (2010).

21. B. Chance, B. Schoener, R. Oshino, F. Itshak, and Y. Nakase, “Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals,” Journal of Biological Chemistry 254(11), 4764–4771 (1979).

22. D. K. Bird, L. Yan, K. M. Vrotsos, K. W. Eliceiri, E. M. Vaughan, P. J. Keely, J. G. White, and N. Ramanujam, “Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH,” Cancer Research 65(19), 8766–8773 (2005).

23. H. Wang, X. Liang, Y. H. Mohammed, J. A. Thomas, K. R. Bridle, C. A. Thorling, J. E. Grice, Z. P. Xu, X. Liu, and D. H. G. Crawford, “Real-time histology in liver disease using multiphoton microscopy with fluorescence lifetime imaging,” Biomedical Optics Express 6(3), 780–792 (2015).

24. S. Rodimova, D. Kuznetsova, N. Bobrov, V. Elagin, V. Shcheslavskiy, V. Zagainov, and E. Zagaynova, “Mapping metabolism of liver tissue using two-photon FLIM,” Biomedical Optics Express 11(8), 4458–4470 (2020).

25. S. Elumalai, S. Managó, and A. C. De Luca, “Raman Microscopy: Progress in Research on Cancer Cell Sensing,” Sensors 20(19), 5525 (2020).

26. L. Becker, N. Janssen, S. L. Layland, T. E. Mürdter, A. T. Nies, K. Schenke-Layland, and J. Marzi, “Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring,” Cancers 13(22), 5682 (2021).

27. S. Z. Al-Sammarraie, L. A. Bratchenko, E. N. Typikova, P. A. Lebedev, V. P. Zakharov, and I. A. Bratchenko, “Silver Nanoparticles-Based Substrate for Blood Serum Analysis under 785 nm Laser Excitation,” Journal of Biomedical Photonics & Engineering 10301 (2022).






© 2014-2024 Samara National Research University. All Rights Reserved.
Public Media Certificate (RUS). 12+